Quasi-multipliers and Algebrizations of an Operator Space

نویسنده

  • MASAYOSHI KANEDA
چکیده

Let X be an operator space, let φ be a product on X , and let (X, φ) denote the algebra that one obtains. We give necessary and sufficient conditions on the bilinear mapping φ for the algebra (X, φ) to have a completely isometric representation as an algebra of operators on some Hilbert space. In particular, we give an elegant geometrical characterization of such products by using the Haagerup tensor product. Our result makes no assumptions about identities or approximate identities. Our proof is independent of the earlier result of Blecher-Ruan-Sinclair ([6]) that solved the case when the algebra has an identity of norm one, and our result is used to give a simple direct proof of this earlier result. We also develop further the connections between quasi-multipliers of operator spaces, and shows that the quasi-multipliers of operator spaces defined in [12] coincide with their C∗-algebraic counterparts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some topologies on the space of quasi-multipliers

‎Assume that $A$ is a Banach algebra‎. ‎We define the‎ ‎$beta-$topology and the $gamma-$topology on the space $QM_{el}(A^{*})$ of all bounded extended left quasi-multipliers of $A^{*}.$‎ ‎We establish further properties of $(QM_{el}(A^{*}),gamma)$ when $A$ is a $C^{*}-$algebra‎. ‎In particular‎, ‎we characterize the $gamma-$dual‎ ‎of $QM_{el}(A^{*})$ and prove that $(QM_{el}(A^{*}),gamma)^{*},$...

متن کامل

Some algebraic properties of Lambert Multipliers on $L^2$ spaces

In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

On the fine spectra of the generalized difference operator Delta_{uv} over the sequence space c0

The main purpose of this paper is to detemine the fine spectrum of the generalized difference operator Delta_{uv} over the sequence space c0. These results are more general than the fine spectrum of the generalized difference operator Delta_{uv} of Srivastava and Kumar.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004